Pseudo code of the paper
# Initialize model with shared trunk and independent output heads
Initialize model with shared trunk and independent output heads
for each head in output_heads:
Initialize head-specific parameters
# Define the forward pass function
def forward_pass(input_sequence):
context = shared_trunk(input_sequence)
predictions = []
for head in output_heads:
prediction = head(context) # Each head predicts based on the shared context
predictions.append(prediction)
return predictions
# Define the loss calculation function
def calculate_loss(predictions, true_future_tokens):
losses = []
for i, prediction in enumerate(predictions):
# Calculate loss for each head's prediction; could be cross-entropy
loss = cross_entropy_loss(prediction, true_future_tokens[i])
losses.append(loss)
return losses
# Define the backpropagation function
def backpropagate(total_loss):
# Compute gradients for each parameter in the model based on the total loss
total_loss.backward() # Automatically updates parameters based on their contribution to the loss
# Define the parameter update function
def update_parameters(optimizer):
optimizer.step() # Updates the model parameters using computed gradients
optimizer.zero_grad() # Resets gradients after updating
# Example training loop
for epoch in range(num_epochs):
for batch in data_loader:
input_sequence, true_future_tokens = batch
predictions = forward_pass(input_sequence)
losses = calculate_loss(predictions, true_future_tokens)
total_loss = sum(losses) # Combine losses from all heads for backpropagation
backpropagate(total_loss)
update_parameters(optimizer)

0 Comments:
Post a Comment
<< Home