Wednesday, May 01, 2024

Pseudo code of the paper

# Initialize model with shared trunk and independent output heads

Initialize model with shared trunk and independent output heads

for each head in output_heads:

    Initialize head-specific parameters


# Define the forward pass function

def forward_pass(input_sequence):

    context = shared_trunk(input_sequence)

    predictions = []

    for head in output_heads:

        prediction = head(context) # Each head predicts based on the shared context

        predictions.append(prediction)

    return predictions


# Define the loss calculation function

def calculate_loss(predictions, true_future_tokens):

    losses = []

    for i, prediction in enumerate(predictions):

        # Calculate loss for each head's prediction; could be cross-entropy

        loss = cross_entropy_loss(prediction, true_future_tokens[i])

        losses.append(loss)

    return losses


# Define the backpropagation function

def backpropagate(total_loss):

    # Compute gradients for each parameter in the model based on the total loss

    total_loss.backward() # Automatically updates parameters based on their contribution to the loss


# Define the parameter update function

def update_parameters(optimizer):

    optimizer.step() # Updates the model parameters using computed gradients

    optimizer.zero_grad() # Resets gradients after updating


# Example training loop

for epoch in range(num_epochs):

    for batch in data_loader:

        input_sequence, true_future_tokens = batch

        predictions = forward_pass(input_sequence)

        losses = calculate_loss(predictions, true_future_tokens)

        total_loss = sum(losses) # Combine losses from all heads for backpropagation

        backpropagate(total_loss)

        update_parameters(optimizer)


0 Comments:

Post a Comment

<< Home